VP 2024 CCPC 哈尔滨

2024 China Collegiate Programming Contest (CCPC) Harbin Onsite (The 3rd Universal Cup. Stage 14: Harbin)
比赛链接

Problems AC Note
A. Build a Computer 构造、拆数位
B. Concave Hull 凹包
C. Giving Directions in Harbin
D. A Simple String Problem 字符串、后缀数组、不可做
E. Marble Race 可撤销背包、多项式
F. 1D Galaxy 不可做
G. Welcome to Join the Online Meeting!
H. Subsequence Counting 不可做
I. A Brand New Geometric Problem DP、质因子分解
J. New Energy Vehicle 铜牌题、贪心
K. Farm Management
L. A Game On Tree 树上问题、期望、拆贡献
M. Weird Ceiling

M

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
void solve() {
int n = read();

vector<int> a;
// a.eb(1);

for (int i = 1; i * i <= n; i++) {
if (n % i == 0) {
a.eb(i);

if (n / i != i) {
a.eb(n / i);
}
}
}

std::sort(a.begin(), a.end());

int ans = 0;
int m = a.size();
for (int i = 1; i < m; i++) {
// cout << "a: " << a[i] << '\n';
ans += n / a[i - 1] * (a[i] - a[i - 1]);
}

ans += n / a[m - 1] * (n - a[m - 1] + 1);

cout << ans << '\n';
}

G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
void solve() {
int n = read(), m = read(), k = read();

vector<int> bad(n + 1);
for (int i = 1; i <= k; i++) {
int x = read();
bad[x] = 1;
}

vector<int> vis(n + 1);
vector<vector<int>> g(n + 1);

using pii = std::pair<int, int>;

int timer = 0;
vector<int> idx(n + 1);
vector<vector<int>> ans(n + 1);

std::function<void(int)> dfs = [&](int u) {

vis[u] = 1;
if (bad[u]) return;

for (int v : g[u]) {
if (!vis[v]) {
idx[++timer] = u;
break;
}
}

for (int v : g[u]) {
if (!vis[v]) {

ans[u].eb(v);
dfs(v);
}
}
};

for (int i = 1; i <= m; i++) {
int u = read();
int v = read();
g[u].eb(v);
g[v].eb(u);
}
for (int i = 1; i <= n; i++) {
if (!bad[i]) {
dfs(i);
break;
}
}

for (int i = 1; i <= n; i++) {
if (!vis[i]) {
cout << "No\n";
return;
}
}

cout << "Yes\n";
cout << timer << '\n';
for (int i = 1; i <= timer; i++) {
int u = idx[i];
cout << u << ' ' << ans[u].size();

for (int v : ans[u]) {
cout << ' ' << v;
}
puts("");
}
}

K 二分

按 w 从大到小排序,枚举操作的 i。那么比这个收益小的都卡底线。收益大的是一段前缀,二分这个前缀就做完了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
void solve() {
int n = read(), m = read();

vector<Node> a(n + 1);
for (int i = 1; i <= n; i++) {
a[i].w = read();
a[i].l = read();
a[i].r = read();
}

std::sort(a.begin() + 1, a.end());

int ans = 0;

int tim = 0;
int tot = 0;
for (int i = 1; i <= n; i++) {
tim += a[i].l;
tot += a[i].l * a[i].w;
}

vector<int> sum(n + 1);
vector<int> sumw(n + 1);
for (int i = 1; i <= n; i++) {
sum[i] = sum[i - 1] + a[i].r - a[i].l;
sumw[i] = sumw[i - 1] + (a[i].r - a[i].l) * a[i].w;
}

for (int i = 1; i <= n; i++) {
int res = tot - a[i].l * a[i].w;

int rem = max(0LL, m - tim + a[i].l);

int pos = 0;
for (int l = 1, r = i - 1; l <= r; ) {
int mid = l + r >> 1;
if (sum[mid] <= rem) {
pos = mid, l = mid + 1;
} else {
r = mid - 1;
}
}

// cout << pos << " ";
// cout << rem << " ";
// cout << res << " ";
// cout << " | ";

res += sumw[pos];
rem -= sum[pos];
pos++;
res += rem * a[pos].w;

// cout << i << " ";
// cout << pos << " ";
// cout << rem << " ";
// cout << res << " ";
// cout << '\n';

ans = max(ans, res);
}

cout << ans << '\n';
}

L TreeDP、期望

首先期望是假的,算总收益再除去方案数即可。

考虑拆下这个期望,平方拆开来是每个数的平方加上选两个项乘起来。

$$
\left(\left|e_1\right|+\left|e_2\right|+\ldots+\left|e_k\right|\right)^2=\sum_{i=1}^k\left|e_i\right|^2+\sum_{1 \leq i, j \leq k}\left|e_i\right| \cdot\left|e_j\right|
$$

这里的 $e_i$ 均为 $1$。

一种选法的贡献可以分为两种:

  • 一种是由公共边 $e_i$ 产生的
  • 一种是由有序对 $(e_i, e_j)$ 产生的

不妨设 $siz[u]$ 为 $u$ 的子树大小,$sum[u] = \sum_{v \in subtree_u}{(siz[v])^2}$。

分别讨论下这个贡献怎么算就行了,sol 写的很清楚了不再赘述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
void solve() {
int n = read();

vector<vector<int>> g(n + 1);

for (int i = 1; i < n; i++) {
int u = read();
int v = read();
g[u].eb(v);
g[v].eb(u);
}

Z ans = 0;
vector<Z> siz(n + 1), sum(n + 1);
std::function<void(int, int)> dfs = [&](int u, int fa) {
siz[u] = 1;

for (int v : g[u]) {
if (v == fa) continue;

dfs(v, u);
siz[u] += siz[v];
sum[u] += sum[v];
}

Z t = sum[u];
sum[u] += siz[u] * siz[u];


for (int v : g[u]) {
if (v == fa) continue;

ans += siz[v] * siz[v] * (n - siz[v]) * (n - siz[v]);
ans += 2 * (n - siz[v]) * (n - siz[v]) * (sum[v] - siz[v] * siz[v]);
ans += (t - sum[v]) * sum[v];
}

};
dfs(1, 0);

// for (int i = 1; i <= n; i++) {
// cout << siz[i] << '\n';
// }
// puts("------");
// for (int i = 1; i <= n; i++) {
// cout << sum[i] << '\n';
// }
// puts("------");

ans /= n * (n - 1) / 2;
ans /= n * (n - 1) / 2;
cout << ans << '\n';
}

A 构造

唉唉 VP 的时候被这个痛苦折磨。构造解的时候不应该想着具体化的最优策略,应该好好想想形式化的表述的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
void solve() {
int L = read();
int R = read();

vector<int> d(1000);

int st = 1;
int ed = 2;
d[0] = ed;

using pii = std::pair<int, int>;
vector<vector<pii>> g(1000);

for (int i = 1; i <= 20; i++) {
d[i] = ed + i;

g[d[i]].eb(d[i - 1], 0);
g[d[i]].eb(d[i - 1], 1);
}

int cur = 22; // 20(log) + 1(st) + 1(ed)
vector ts(1000, vector<int>(2, -1)); // trie

auto get_id = [&](int p) {
vector<int> s;
for (; p; p >>= 1) s.eb(p % 2);
std::reverse(s.begin(), s.end());
int now = st;
for (auto x : s) {
if (ts[now][x] == -1) {
ts[now][x] = ++cur;
g[now].eb(cur, x);
}
now = ts[now][x];
}
return now;
};

auto cons = [&](this auto &&self, int l, int r, int lb, int rb, int lv, int p) -> void {
if (l == lb and r == rb) {
int w = 0, f = p / 2;
if (f * 2 + 1 == p) {
w = 1;
}

int id = get_id(f);
g[id].eb(d[lv], w);
return;
}
int mid = lb + rb >> 1;
if (r <= mid) {
self(l, r, lb, mid, lv - 1, p * 2);
} else if (mid < l) {
self(l, r, mid + 1, rb, lv - 1, p * 2 + 1);
} else {
self(l, mid, lb, mid, lv - 1, p * 2);
self(mid + 1, r, mid + 1, rb, lv - 1, p * 2 + 1);
}
return;
};

cons(L, R, 0, (1 << 20) - 1, 20, 0);

// for (int i = 1; i <= cur; ++i) {
// printf("Node %d: ", i);
// for (auto v : g[i])
// printf("%d|%d ", v.first, v.second);
// puts("");
// }

int n = 1;
std::map<int, int> idx;
idx[1] = 1;
vector<int> vis(1000);
auto dfs = [&](this auto &&self, int u) -> void {
vis[u] = 1;
for (auto [v, dis] : g[u]) {
if (vis[v]) continue;
self(v);
}
};
dfs(1);
for (int i = 2; i <= cur; i++) {
if (!vis[i]) continue;
idx[i] = ++n;
}

vector<vector<pii>> G(1000);
for (int i = 1; i <= cur; i++) {
if (!vis[i]) continue;
for (auto [j, dis] : g[i]) {
int u = idx[i];
int v = idx[j];
G[u].eb(v, dis);
}
}

cout << n << '\n';
for (int u = 1; u <= n; u++) {
cout << G[u].size();
for (auto [v, dis] : G[u]) {
cout << " " << v;
cout << " " << dis;
}
cout << '\n';
}
}

E 可撤销背包、多项式

$m$ 个球,速度为 $v_i$ , $n$ 个位置 $x_1, \cdots , x_n$ ,每个球都会随机选择一个位置,然后向正方向移动,求坐标中位数在原点的期望时间,对 $10^9 + 7$ 取模

$n, m \le 500$

设 $m = O(n)$,可能的时间答案一定是某个 $t = \frac{x_i}{v_j}$,那么一共有 $n \cdot m$ 个 $t$,对于每个 $t$,求恰好有 $\lfloor \frac{m}{2} \rfloor$ 个球还没经过原点的概率

对于每个球,可以枚举所有位置,计算出在 $t$ 时没经过原点的概率 $p_i$,经过原点的概率 $1-p_i$。求恰好有 $\lfloor \frac{m}{2} \rfloor$ 个球还没经过原点的概率,这东西是可以背包的。这样的复杂度是 $O(n^4)$。

实际上状态数量并没有那么多,看起来有 $O(n^3)$ 个 $p_i$ ($n^2$ 个 $t$ 和 $n$ 个球),实际上对于每个球,假如我们将 $O(n^2)$ 个 $t$ 从小到大排序,并从小到大枚举这个 $t = \frac{x_i}{v_j}$,对于这个 $t$,只有对应的 $p_j$ 会发生改变,而其他的球都不会发生改变,也就是说实际上就 $O(n^2)$ 个状态。并且我们可以维护所有球的 $dp$ 数组,当某个球发生改变时,撤销那个球,然后把概率变化后的新球加上去。

更进一步地,根据可撤销背包的知识,我们知道单次的可撤销背包对应除一个单项式。我们可以将每个球看作 $p_i\cdot x + (1 - p_i)$,求的是生成函数的 $x^{m / 2}$ 项的系数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
void solve() {
int n = read(), m = read();

vector<int> x(n);
for (int i = 0; i < n; i++) {
x[i] = -read();
}
vector<int> v(m);
for (int i = 0; i < m; i++) {
v[i] = read();
}

vector<pii> t;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
t.eb(i, j);
}
}
std::sort(t.begin(), t.end(), [&](pii a, pii b) {
return x[a.fi] * v[b.se] < x[b.fi] * v[a.se];
});

Z ans = 0;
Z invN = Z(n).inv();
vector<Z> d(m + 1);
vector<Z> f(m + 1);
f[0] = power(Z(n), m);

auto ins = [&](Z x) {
Z y = n - x;
for (int i = m; i >= 1; i--) {
f[i] = f[i] * y + f[i - 1] * x;
}
f[0] *= y;
};
auto del = [&](Z x) {
Z y = Z(n - x).inv();
f[0] *= y;
for (int i = 1; i <= m; i++) {
f[i] = (f[i] - f[i - 1] * x) * y;
}
};

for (auto [i, j] : t) {
del(d[j]);
ans += f[m / 2] * invN * x[i] / v[j];
d[j] += 1;
ins(d[j]);
}

ans *= power(invN, m - 1);

cout << ans << '\n';
}
Author

TosakaUCW

Posted on

2024-11-07

Updated on

2024-12-10

Licensed under

Comments